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Abstract 
One of the greatest challenges in color imaging 

reproduction is to match the appearance of a scene and 

a reproduction of its captured image, and at the same 

time assess and improve its overall image quality. This 

paper reviews many of the aspects that are relevant to 

the quality of color reproduction describing research 

performed on spectral color imaging from scene to 

printing, high-dynamic range imaging and displaying, 

color image matching quality assessment and color 

image appearance modeling. 

 

Introduction 
In the past, traditional color reproduction techniques in arts and 

crafts have been relying on techniques based on experience. In 

the pre-scientific color studies, philosophers just speculated on 

the nature of color. Color organization and representation 

started being systematized only during the 15th century. Color 

science began with the establishment of a correspondence 

between color and its physical stimuli in the 17th century. In the 

19th century, the advance of sciences such as physics and 

chemistry contributed for the development of color science 

discipline. CIE (Commission Internationale de l’Eclairage) 

specified colorimetry in 1931 giving a physical relationship 

between measured stimulus and color science through a color 

response based on a standard observer.1 The increasing speed 

of computing equipment and imaging devices such as digital 

cameras, electronic displays and printers, allowed the 

development of techniques for color imaging. This advent of 

electronic imaging in the last decades of the last century, 

supplanting film in popularity, was accompanied with a need to 

perform color management in a more systematic way. Then, 

color management systems based on colorimetry have been 

developed and incorporated as profiles in software interfacing 

and intermediating imaging devices.2,3  

 Colorimetric-based imaging can achieve pleasant 

reproduction under controlled environment but it fails when a 

critical color-matching application is required, such as textile 

color control, medical imaging or artwork reproduction. In 

particular, in the area of multimedia where we can access color 

images through the worldwide network of computers, the 

WYSIWYG (what you see is what you get) fidelity in the 

reproduction of color has become very important. Moreover, 

the traditional cross-media reproduction systems does not 

consider the ground truth of the original scene. 

Multi-channel visible spectrum imaging (MVSI), also 

known as spectral imaging, multi-spectral imaging, 

multispectral imaging or spectral color imaging, offers an 

imaging paradigm that increases color accuracy at the expense 

of higher system bandwidth demands and increasing system 

complexity and cost.4-10 Spectral color imaging performs a finer 

sampling in the wavelength domain and its techniques allow 

estimation of the spectral reflectance properties of the scene 

and therefore it can minimize the effects of metamerism.2 

Spectral color imaging helps to match the color appearance of 

original scene with reproduced images. Color science further 

developed with the advances in the study of physiology and 

psychophysics in the second half of the 20th century.11,12 

Spectral color imaging can transcend the limitation in 

color accuracy of current trichromatic imaging systems 

providing wavelength resolution. However, a more complete 

concept of image quality has to include other relevant factors 

such as SNR (Signal-Noise ratio), spatial resolution, as well as, 

and intensity resolution and range. The increase in spatial 

resolution is currently going on actively as exemplified by the 

“megapixel war” of consumer camera manufacturers. However, 

light intensity resolution and range has just started been tackled 
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by consumer camera manufacturers. The light intensity 

resolution and range is domain of high-dynamic range 

imaging.13 Current commercial imaging devices are limited in 

the dynamic range of light intensity it can capture. As a 

consequence, when capturing scenes containing simultaneously 

deep shadows and highlights, the imaging device are not able 

to capture the whole range of intensities resulting in loss of 

detail in the shadows and/or bright areas of images. Moreover, 

the lack of light intensity resolution can lead to undesired 

quantization artifacts.  

Spectral color imaging and high-dynamic range 

imaging can help to increase the fidelity of color reproduction 

but in order to match color image appearance in cross-media 

and cross-environmental conditions it is also necessary to 

consider how our vision system adapts to viewing conditions. 

This lead to a whole new field in color science dedicated to 

color appearance modeling.12 Although CIE colorimetry is 

based on human vision, it cannot predict the appearance of 

color images in day-to-day conditions because it is based on 

adapted eyes in pre-defined laboratory conditions, unlike the 

environment where most colors are seen. The specification and 

prediction of color appearance should also consider the 

influence of environmental factors in the sensation of color, 

such as illumination and background. 

After matching spectral reflectance, dynamic range and 

appearance between original scene and reproduction image it is 

necessary to consider other physical limitations such as the 

color gamut and intensity range of color displaying devices. In 

order to compensate the limitations of the reproducing device 

(either display or hardcopy) it is necessary to perform a 

mapping from image representation space to physical display 

space. It raises the question of what is the best mapping 

strategy and how to assess the quality of matching. Image 

quality assessment has relayed on time-consuming 

psychophysical experiments. Increasingly accurate color 

appearance models have been proposed but these models were 

devised using solid uniform color patches and spatial color 

appearance models have been a very active area of research.14,15 

 

Colorimetric Color Imaging 
Colorimetric color imaging is based on transformation of 

device color space to a device-independent color space based 

on linear transformation.2,16 This can be achieved by calibration 

procedures usually by measuring colorimetric values under 

certain illumination condition and associating these 

measurements with what is captured, displayed or printed. The 

colorimetric modeling generally consists of a non-linear 

transformation followed by a linear color transformation. 

Colorimetric color imaging works fine under controlled 

illumination. For some applications such as portraiture it is 

possible to estimate spectral properties of skin from 

conventional trichromatic cameras and doing so it introduces 

flexibility on changing illumination.17 An example of this 

application is shown in Figure 1 in which a portrait scene taken 

under illuminant with spectral radiance E1(λ) is captured by a 

HDTV camera giving signals R, G, B.17 These device color 

signals are then converted to device independent X, Y, Z values 

using color transformation M1. Spectral reflectance R(λ) image 

is then estimated from colorimetric signals using eigenvector 

(it could be directly derived from camera signals as normally 

performed, but in this example it is converted from 

colorimetric values in order to be consistent with the 

colorimetric color reproduction flow). Then colorimetric values 

X’, Y’, Z’ are calculated for a new illuminant with spectral 

radiance E2(λ). A pre-calculated transformation M2.obtained by 

display calibration transforms the colorimetric values to 

display device space color values Rc, Gc, Bc. A pre-calculated 

color transformations M3.is used to transform display color 

values to printing values Rp, Gp, Bp so when the portrait image 

is printed and viewed under illuminant with spectral radiance 

E3(λ) the measured colorimetric values X”, Y”, Z” are going to 

match with X’, Y’, Z’. 

Figure 1. Example of colorimetric color imaging with spectral 

estimation 

 

Another example of colorimetric color reproduction system is 

the European MARC project that demonstrated the feasibility 

of an end-to-end scene to hardcopy colorimetric 

color-management system for artwork reproduction.18 This 

project was very successful in producing high-quality 

reproductions that matched the original paintings under 

controlled illumination. 
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Spectral Color Imaging 

The example of Figure 1 has a spectral estimation that relies on 

trichromatic capture because skin color can be very accurately 

reconstructed using only three-color channels. However, when 

scenes with a myriad of colors are involved, such as artwork 

imaging, it is necessary to increase spectral sampling in order 

to estimate accurately spectral properties of the material. 

Technical issues concerned with multi-channel image 

acquisition and reconstruction, such as number of required 

basis functions, compression, imaging artifacts, type of 

transformation, reconstruction space and reproduction quality 

metrics have been studied extensively.4-10,19-27 In contrast to the 

abundance of research concerning image-capture aspects of 

spectral imaging, there has been much less research on the 

spectral color reproduction of hardcopy.10, 28-36 At MCSL, an 

algorithm was developed by Tzeng comprising several 

steps.31-34 At first, a priori analysis was performed to determine 

an optimal ink set.31 In this analysis, the spectral properties of 

the colorants used to create the original object were measured 

or estimated and analyzed statistically. The possible statistical 

colorants were correlated to real inks in an existing database 

resulting in an optimal ink set.32 A printer overprint model was 

next derived.33 The spectral reflectance of the ink overprints 

were predicted using Kubelka-Munk theory.37 The 

Yule-Nielsen modified Neugebauer equations were used to 

predict spectral reflectance from dot areas.38 More details on 

the use of this model for developing printer profiles are given 

by Iino and Berns.28,29  Using this approach, Tzeng was 

successful in reproducing the colors of the GretagMacbeth 

ColorChecker color rendition chart using the Dupont 

WaterProof proofing process with six inks.34 The average color 

difference between the original rendition chart and the 

reproduction for illuminant D50 and the 2° observer was 1.9 

ΔE*94 with maximum of 5.8. The research by Tzeng was 

fundamental and not focused on the high-speed requirements to 

create color separations for high-resolution images. Essentially, 

Tzeng used images with limited number of pixels 

(corresponding to the various target colors such as the 

ColorChecker). Extending his research to images with millions 

of pixels was a research topic at MCSL.10,36 In one earlier work, 

an end-to-end spectral reproduction from scene to hardcopy 

was obtained using as input, a liquid-crystal tunable filter 

(LCTF) attached with a camera loaded with negative film and 

as output, six-color MatchPrint proofing.7 We extended the 

spectral-based ink separation research from proofing to ink-jet 

printing using initially a four-color ink-jet printer10 performing 

spectral color reproduction from scene to hardcopy using a 

trichromatic digital camera and a four-color inkjet printer, in 

order to verify the feasibility and accuracy of spectral imaging 

and reproduction using systems that do not require fabrication 

especially for this purpose. For this feasibility study, we 

developed an end-to-end spectral color reproduction system 

comprising a spectral image-acquisition system23 and a 

spectral-based printing system.10 A scene was captured using 

broadband multi-channel imaging of the visible spectrum. The 

spectral reflectance of each pixel was estimated from the 

digital signals.23 The spectral reflectance image was processed 

by a spectral-based color-separation algorithm, and prints 

produced. The goal of this research was to produce hardcopy 

results that are spectrally matched to original colors. We used 

off-the-shelf trichromatic digital camera combined with 

multiple filtration, image processing, and four-color ink-jet 

printing. Both scene input and printed output were defined 

spectrally. The spectral-based printing separation algorithm 

produced the least metameric reproduction to the original scene 

using a computationally feasible approach. The goal of this 

end-to-end color-reproduction research was the examination of 

the possibilities and limitations of commercial input and output 

devices. Results showed an average end-to-end system 

accuracy of 1.5 ΔE00 and spectral reflectance rms error of 0.9% 

between measured and reproduced reflectances for a printed 

target of 55 colors.  

Figure 2. Influence of noise introduction on spectral curve 

estimation accuracy.  

 

Figure 2 shows an example of how going from theoretical 

eigenvector reconstruction to simulated estimation and 
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reconstruction from actual imaging will introduce noise and 

has influence on the accuracy of spectral reflectance curve 

estimation. 

Figure 3. Influence of noise introduction on spectral-based printing 

estimation accuracy.  

 

 Figure 3 shows an example of how progressively going 

from a theoretical printer simulation to a whole imaging chain 

from capture to printing introduces noise making measured 

spectral curves of the print diverge from the original 

measurement. 

This research was further extended to digital imaging 

capturing system with more spatial resolution and six-color 

printing.36 More details can be found at www.art-si.org 

 

High-Dynamic Range Imaging 
High-dynamic range (HDR) images are becoming widely 

available. Computer generated images are the most common 

sources but a growing number of alternatives exist for natural 

imaging capture.13,39 The development of HDR displays has 

lagged the availability of HDR content, and most HDR images 

must be tonally compressed to be viewed with typical 

electronic displays. In order to support this dynamic range 

compression, many researchers have proposed methods for 

rendering high-contrast HDR images to non-HDR displays.13 

Such rendering methods are basically strategies to perform tone 

mapping. The abundance of proposed tone mapping algorithms 

lead to researchers in HDR image rendering to perform 

psychophysical evaluation experiments comparing a HDR 

image or scene with a tone-mapped image. However, as stated 

in the CIE TC8-08: Spatial Appearance Modeling and HDR 

Rendering, it is necessary to make comparisons of rendered 

images against an original to evaluate its accuracy of 

appearance. Since it is not practical to have an original natural 

HDR scene always available under controlled observation 

condition, it is necessary to build display devices that improves 

dynamic range capabilities by many orders of magnitude 

compared to current displays in order to show the HDR scene. 

Such HDR displays can be built based on a proposed display 

system using a combination of off-the-shelf components 

consisting of a Digital Light Projector (DLP) and a Liquid 

Crystal Display (LCS) panel.40 Such HDR display is based on a 

dual modulation principle, where the LCD panel is used as an 

optical filter that modulates a high intensity but lower 

resolution image coming from the DLP projector. Such a HDR 

display system was built41 and calibrated42 before compared 

with an original scene as shown in Figure 4. 

A framework for HDR video sequence rendering 

evaluation was proposed. In this framework, HDR images with 

XYZ tristimulus values image sequences are converted to six 

channel images using HDR display characterization. The same 

HDR images are tone-mapped and rendered to a CRT display. 

A system with processing capability for HDR video sequences 

is also presented as well as procedure to calibrate both CRT 

and HDR displays. A calibrated CRT monitor was placed next 

to the HDR display to allow side-by-side evaluations. The 

captured HDR scene is displayed on both HDR and CRT 

displays. The colorimetric values XYZm of the original scene 

are measured. The capture produced a raw linear data that was 

processed to give a reconstructed XYZr tristimulus image. This 

image is the reference and starting point for both display 

rendering and tone-mapping rendering for the CRT display. 

 

Figure 4. Processing flowchart for HDR imaging 
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The built HDR display system was capable of showing 

14-bit dynamic range data. The XYZ reference values were 

rescaled to fit within the range of the HDR display. Using a 

HDR display inverse model, a sextuplet of values (RPGPBP 

values for the DLP and RLGLBL values for the LCD) to drive 

the HDR display. The HDR image was then rendered to be 

displayed on the CRT display considering angular and spatial 

non-uniformity. Ratios between colorimetric values are used to 

compare accuracy of the reproduction but a more appropriate 

metric has to be devised to compare images in this emerging 

and fascinating field of HDR imaging. 

Figure 5. Corresponding color reproduction diagram. 

 
 

Color Imaging Appearance Modeling 
Figure 5 shows a schematic diagram of a corresponding color 

reproduction system that takes in account color appearance 

modeling.43 By using color appearance models, the tristimulus 

values Xc, Yc, Zc after chromatic adaptation can be calculated 

from the tristimulus values X’, Y’, Z’ obtained by colorimetric 

color reproduction. The first step is a transformation M2 from 

tristimulus values X’, Y’, Z’ to cone fundamental tristimulus 

values L, M, S. Thereafter, the calculated L, M, S values are 

used to estimate fundamental tristimulus values La, Ma, Sa 

corresponding to the cone responses after the chromatic 

adaptation by using color appearance models. The tirstimulus 

values Xa, Ya, Za  are calculated by the inverse matrix of M2 

and displayed using color transformation based on display 

calibration. 

Psychophysical experiments showed that color 

appearance models derived from color patches did not perform 

at it best when used for complex images.43  Color appearance 

modeling can be optimized for a particular type of scene, such 

as portraiture.44 However, for a general application, a simple 

spatial model has to be proposed.14,15 

 

Color Image Quality Metrics 
A perceptual color difference was proposed as an alternative 

color difference metric for complex images instead of the 

conventional color difference equation.45 This color difference 

is derived based on Mahalanobis distance by using covariance 

matrices for differences of each color attribute. The covariance 

matrices for each class of images can be obtained by 

psychophysical experiments using just noticeable difference in 

paired comparisons. The Mahalanobis distance, commonly 

used in pattern recognition analyses, makes uniform the 

influence of the distribution of each attribute considering the 

correlation between each term. The Mahalanobis distance can 

be applied in a color space using metric lightness, chroma and 

hue angle, as follows; 

 

where σLL, σCC, σhh are the variances of metric lightness, 

chroma, hue angle, respectively. ΔL, ΔC and Δh are 
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respectively difference of the metric lightness, chroma and hue 

angle difference between two images, for instance the original 

and the reproduction. On the other hand, σLC (σCL ), σLh (σhL ), 

σCh (σhC ) are the covariances between metric lightness and 

chroma, and lightness and hue angle, and chroma and hue 

angle, respectively. The variance-covariance matrix can be 

easily derived using three-dimensional threshold of 

color-difference perceptibility as shown above.
1,46,47 The 

resultant matrices were compared for different classes of 

images and we reported that the information in the resulting 

matrix can give very useful trends and clues about which kind 

of transformation can minimize the perceptual color difference 

in images when a transformation such as a gamut mapping is 

required. 

 

Other image quality considerations 
Each imaging paradigm presented above is focused in a 

particular aspect of color image quality. Spectral color imaging 

is particularly important to critical applications in which 

identification of materials and illumination-independence is 

relevant.  In the other hand, the main benefit of HDR imaging 

is increasing visibility. Color appearance models are critical for 

cross-media reproduction.  Due to the limitations and scope 

for this paper, other important image quality factors were 

omitted. In particular, the pursuit of fitting more and more 

pixels in the same physical package in imaging sensors has 

lead to smaller and smaller pixels resulting in loss of sensitivity 

and consequently increasing noise levels.48 We also cannot 

forget that in a consumer market, color preference from the 

users is more critical than color accuracy and fidelity.49,50 

 

Conclusion 

Image quality is a complex problem that is one of the biggest 

challenges in imaging Advanced research on spectral color 

imaging and high-dynamic range imaging combined with color 

appearance modeling and image quality assessments are big 

steps towards a modeling for a total image quality concept. 

However, there are still a lot of work to be performed 

extending current technologies for a more comprehensive 

image representation and rendering that matches perfectly with 

our perception. The researches mentioned in this paper were 

executed while the author was at Chiba University, Japan 

between 1993 and 1997; at Munsell Color Science Laboratory, 

RIT, Rochester, NY, USA from 1997 to 2003 and at Pixim Inc. 

between 2003 and 2005. Further details can be found in the 

referenced papers. 
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